Mountain View Automated Guideway Transit Feasibility Study

Community Meeting September 25, 2017

Jim Lightbody, City of Mountain View
Jenny Baumgartner, Lea+Elliott
Eileen Goodwin, Apex Strategies
Agenda

- Presentation
- Questions and Answers Session
- Moderated Discussion: Issues/Trade-Offs
Purpose of Meeting

- Present Findings of Evaluation
 - Highlight key parameters of Evaluation Criteria
 - Educate on potential service levels and infrastructure tradeoffs
- Feedback
 - Community feedback from key issues/ trade-offs discussion
Introduction

- **Purpose of Study**
 - **The Challenge**
 - Employment and housing growth
 - Caltrain rider growth
 - Achieving city goals for mode shift
 - **The Goal**
 - Determine the feasibility, and impacts/benefits of Automated Guideway Transit (AGT)
 - How would AGT be integrated into community over time
Issues/Trade-offs

- Passenger Experience
 - Vehicle size
 - Type and frequency of service
- Infrastructure
 - Community impacts
- Technology Maturity
 - Current cost and future evolution of technology
 - Expandability/Adaptability
Purpose: Presented study and Automated Guideway Transit (AGT) types and engage community with respect to study objectives and AGT system characteristics.
Previous Outreach Meeting

- Technology
 - Nothing intrusive
 - Frequent service and smaller vehicles especially in the residential areas
 - Land use consideration, concern about where the land will come from

- Priorities/Considerations
 - Weighing “fast service” versus “adaptable”
 - Need to prioritize

- Goals and Values
 - Adaptable, expandable to connect multiple points in Mountain View and beyond
 - Compatibility with multimodal transportation—i.e. bikes, personalized transportation
 - First and last mile connectivity is important
AGT Technologies

- Aerial Cable
- Automated People Mover (APM)
- Automated Transit Network (ATN)
 - Group Rapid Transit (GRT)
 - Personal Rapid Transit (PRT)
- Autonomous Transit (AV)
Candidate Corridors

- Connect key nodes
 - Downtown Transit Center
 - North Bayshore
 - Moffett Field and NASA
- Representative alignments
 - Potential service areas
 - Physical/environmental limitations
Representative Alignments
Evaluation Criteria

<table>
<thead>
<tr>
<th>CATEGORY</th>
<th>CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations</td>
<td>1 Ability to serve market demand estimate</td>
</tr>
<tr>
<td></td>
<td>2 Flexibility in service / responsiveness to daily demand</td>
</tr>
<tr>
<td>Financial and Economic</td>
<td>3 Financial feasibility</td>
</tr>
<tr>
<td></td>
<td>4 Ability to add stations to serve existing or new developments</td>
</tr>
<tr>
<td>Neighborhood Connectivity and Impact</td>
<td>5 Ability to extend the system</td>
</tr>
<tr>
<td></td>
<td>6 Possible impact on neighborhoods</td>
</tr>
<tr>
<td>Customer Experience</td>
<td>7 Provides convenient and high-level service</td>
</tr>
<tr>
<td>System Delivery</td>
<td>8 Integration into Transit Center</td>
</tr>
<tr>
<td></td>
<td>9 Ability to fit within the local environment</td>
</tr>
<tr>
<td></td>
<td>10 Adaptability of infrastructure</td>
</tr>
<tr>
<td>Technology Development</td>
<td>11 Level of technology maturity</td>
</tr>
</tbody>
</table>
Findings and Issues/Trade-offs

- Methodology
- Findings focus on 3 main areas of issues and trade-offs
 - Passenger Experience
 - Infrastructure
 - Technology Maturity
- Generate discussion and get feedback
Methodology

- **Technology simulations to estimate operational characteristics**
 - Inputs: Representative alignment, station locations, dwell times, vehicle/passenger comfort parameters, bikes on vehicles

- **Demand: Peak loading at Transit Center (Caltrain and VTA LRT connecting to AGT)**
 - Peak 10 min period: 330 passengers at Transit Center
 - Daily Ridership: 4,000 to 9,000 passengers
Passenger Experience

- Vehicle size: Small vs. Mid vs. Large Vehicles
- Smaller vehicles with higher frequency vs. Larger vehicles with lower frequency
- Flexible, more personalized point-to-point service vs. higher capacity, typical transit service
- Sharing vehicles: Personal vs. Group
- Meeting needs of all riders: ability to accommodate bikes, ADA, etc.
Operational Information

<table>
<thead>
<tr>
<th></th>
<th>Aerial Cable</th>
<th>APM</th>
<th>ATN (PRT/GRT)</th>
<th>AV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle Capacity (passengers)</td>
<td>14 – 32</td>
<td>80</td>
<td>3 / 21</td>
<td>10 – 20</td>
</tr>
<tr>
<td>Travel Time To N. Bayshore* (min)</td>
<td>11</td>
<td>7</td>
<td>6 / 7</td>
<td>6 – 7</td>
</tr>
<tr>
<td>Frequency To N. Bayshore*</td>
<td>30 sec – 1 min</td>
<td>4 min</td>
<td>10 sec / 45 sec</td>
<td>30 sec - 1 min</td>
</tr>
<tr>
<td>Ability to use same technology for North Bayshore network</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*N. Bayshore – Shoreline/Charleston station
VALUES ARE HIGH-LEVEL ESTIMATES ONLY
Passenger Experience

- Meeting needs of all riders
 - Ability to accommodate bikes, ADA, etc.
- Evacuation: Emergency walkway availability
Infrastructure

- Privacy vs. Visual impacts
- Intermittent Towers/structures vs. Consistent Column/viaduct structure
- Reduced traffic congestion and traffic calming vs. Visual impacts of structures
Community Impact

- **Noise**
 - Aerial Cable: Continuous, regular sound
 - APM/ATN/AV: Intermittent as vehicle passes
- **Visual**
 - Aerial Cable: Intermittent Towers
 - APM/ATN/AV: Consistent Columns
- **Privacy**
 - Aerial Cable: Operation over private property
- **Environmental**
Community Impact

- Technologies incorporated into community
 - Potential to extend beyond the Transit Center to N. Bayshore connection
 - Infrastructure renderings:

Automated People Mover

Autonomous / Group Rapid Transit

Aerial Cable Transit

Source: Kimley-Horn
Corridor Challenges
Corridor Challenges

Key Areas:
- 101 and 85
- Shoreline/ Central Expy Way
- Geometry Constraints
- PG&E

Example of an APM system making a 330 ft turn on Charleston Blvd and Shoreline Blvd

Example of an ATN system making a 100 ft turn on Charleston Blvd and Shoreline Blvd
Technology Maturity

- Cost vs. Evolving Technology/Risk
- Install/build now (dedicated guideway) vs. Wait for Autonomous Transit technology to mature (allowing semi-exclusive or exclusive roadway lanes with crossings)
<table>
<thead>
<tr>
<th></th>
<th>Aerial Cable</th>
<th>APM</th>
<th>ATN (GRT)</th>
<th>AV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Cost (per mile)</td>
<td>$35M - $50M</td>
<td>$130M - $195M</td>
<td>$85M - $130M</td>
<td>$85M - $135M</td>
</tr>
<tr>
<td>O&M Cost (per year)</td>
<td>$6M - $8M</td>
<td>$11M - $17M</td>
<td>$6M - $8M</td>
<td>$5M - $8M</td>
</tr>
</tbody>
</table>

Capital Cost Estimate
- Systems: Vehicles, guidance, power, communications, train control, etc.
- Facilities: Civil works for stations, guideway, maintenance facility

O&M Cost Estimate
- Annual cost to operate and maintain the system (staff, central control operators, parts and consumables, etc.)

VALUES ARE IN 2017 USD
Expandability and Adaptability

- Extending System or Adding Midline Stations
 - Aerial Cable: Very difficult
 - APM, ATN, AV: Possible; pre-planning minimizes impact
- Adapting facilities for other technologies
 - Aerial Cable: Not possible
 - APM, ATN, AV:
 - Guideway structures: can be re-used for equal or smaller technologies
 - Stations: may need re-designing to meet operations of different technologies
Next Steps

- Council Study Session – October 17
- Finalize Evaluation and Study Results
- Report to Council in early 2018
Discussion

- Issues/Trade-Offs
 - Passenger Experience
 - Vehicle size
 - Frequency of service
 - Infrastructure
 - Community impacts
 - Representative routes
 - Technology Maturity
 - Current cost and future evolution of technology
 - Expandability/Adaptability
Thank You!

- Website: https://MountainViewAGTFeasibility.com